Contenu archivé

L’information archivée est fournie à des fins de référence, de recherche ou de tenue de documents. Elle n’est pas assujettie aux normes Web du gouvernement du Canada et n’a pas été modifiée ou mise à jour depuis son archivage. Pour obtenir cette information dans un autre format, veuillez communiquer avec nous.

Bibliographie de l'Institut Maurice-Lamontagne

Crustacés - Copépodes / Calanus helgolandicus / 

PLOURDE, S., P. PÉPIN, E.J.H. HEAD, 2009. Long-term seasonal and spatial patterns in mortality and survival of Calanus finmarchicus across the Atlantic Zone Monitoring Programme region, Northwest Atlantic. ICES J. Mar. Sci., 66(9): 1942-1958.

[Résumé disponible seulement en anglais]
The vertical life table method was used to estimate stage-specific daily mortality rates and survival from 1999 to 2006 for Calanus finmarchicus sampled in the Canadian Atlantic Zone Monitoring Programme, which covers the Newfoundland–Labrador Shelf (NLS), Gulf of St Lawrence (GSL), and Scotian Shelf (SS). Stage-specific mortality rates and survival showed significant regional and seasonal differences, with the largest signal associated with variations in temperature. Density-dependent mortality, associated with the abundance of C6 females, was the main factor influencing mortality in the egg–C1 transition during the period of population growth in spring on the SS, and in summer in the GSL and on the NLS. In autumn, mortality in egg–C1 was positively related to temperature and negatively related to phytoplankton biomass, with particularly high mortality rates on the SS. The integration of our results into stage-specific recruitment rates from egg to C5 revealed that C. finmarchicus populations experience their greatest loss (mortality) during the egg–C1 transition. Loss during development to C1 was greater in the GSL than in the other regions during the period of population growth, resulting in lower recruitment success in the GSL. In autumn, C. finmarchicus showed low stage-specific daily recruitment rates on the SS at high temperatures, and low phytoplankton biomass compared with those in the GSL and on the NLS. Our findings reinforce the necessity of describing regional and seasonal patterns in mortality and survival to understand factors controlling the population dynamics of C. finmarchicus.©2009 Oxford Journals

PLOURDE, S., F. MAPS, P. JOLY, 2009. Mortality and survival in early stages control recruitment in Calanus finmarchicus. J. Plankton Res., 31(4): 371-388 .

[Résumé disponible seulement en anglais]
We present a data set describing the seasonal climatology and the spatial pattern in mortality and recruitment in early stages of Calanus finmarchicus in the lower St Lawrence estuary (LSLE) and the Gulf of St Lawrence (GSL), respectively. Contrary to the common assumption of constant mortality, daily mortality during development from egg to N3 or N6 showed important seasonal and spatial variations mostly independent from patterns in population egg production. Patterns in recruitment rate to late naupliar stages were mainly associated with patterns in survival, and dictated patterns in abundance of nauplii N4–6 (seasonal, LSLE) and early copepodite C1–2 (spatial, GSL). Consequently, recruitment to late naupliar and early copepodid stages was largely independent from patterns in population egg production. A multiple regression model showed that phytoplankton biomass and female abundance exerted opposite effects in the control of mortality, illustrating the beneficial effect of high phytoplankton biomass on the survival due to a relaxation of the cannibalism pressure or mortality owing to food shortage. A sensitivity analysis using a stage-based model clearly showed variations in the amplitude and the timing in recruitment to late naupliar stages solely due to different mortality formulations. Moreover, our simulations suggested that temperature alone should not be of primary importance in determining patterns in survival because of its general scaling effect on metabolism. Our study reinforces the importance of an adequate description of mortality and survival in studies of population dynamics and illustrates the importance of developing dynamic mortality formulations integrating multiple effects for future use in models of C. finmarchicus.©2009 Oxford University Press