Contenu archivé

L’information archivée est fournie à des fins de référence, de recherche ou de tenue de documents. Elle n’est pas assujettie aux normes Web du gouvernement du Canada et n’a pas été modifiée ou mise à jour depuis son archivage. Pour obtenir cette information dans un autre format, veuillez communiquer avec nous.

Bibliographie de l'Institut Maurice-Lamontagne

Crustacés - Mysidacés / Boreomysis arctica / 

HARVEY, M., P. GALBRAITH, 2009. Macrozooplankton diel migration in the Estuary and Gulf of St. Lawrence : links to abiotic factors. AZMP Bull. PMZA, 8: 28-35.

Cliquer pour voir tout le texte

HARVEY, M., P.S. GALBRAITH, A. DESCROIX, 2009. Vertical distribution and diel migration of macrozooplankton in the St. Lawrence marine system (Canada) in relation with the cold intermediate layer thermal properties. Prog. Oceanogr., 80(1-2): 1-21.

[Résumé disponible seulement en anglais]
Vertical distribution of various species and stages of macrozooplankton (euphausiacea, chaetognatha, cnidaria, mysidacea, amphipoda) were determined for different times of the day and related to the physical environment. Stratified sampling with the BIONESS was carried out during seven cruises in spring and fall 1998, 2000, and 2001, and fall 1999, in two different habitats in the St. Lawrence marine system: the lower St. Lawrence Estuary and the NW Gulf of St. Lawrence. Our results indicate that the various macrozooplankton species were distributed throughout the whole water column including the surface layer, the cold intermediate layer (CIL), and the deep layer at different times of day and night in both areas during all periods. Moreover, three types of migrational patterns were observed within this zooplanktonic community: (1) nocturnal ascent by the whole population, (2) segregation into two groups; one which performed nocturnal accent and another which remained in the deep, and (3) no detectable migration. We also observed that the diel vertical migration (DVM) amplitude in most of the macrozooplankton species varied as a function of physical factors, in particular the spatio-temporal variations of the CIL thermal properties, including the upper and the lower limits of the CIL and the depth of the CIL core temperature. Finally, the different DVM patterns coupled with estuarine circulation patterns and bottom topography could place animals in different flow regimes by night and by day and contribute to their retention (aggregation) and/or dispersion in different areas, time of the day, and seasons. Crown Copyright ©2008 Published by Elsevier Ltd.

DESCROIX, A., M. HARVEY, S. ROY, P.S. GALBRAITH, 2005. Macrozooplankton community patterns driven by water circulation in the St. Lawrence marine system, Canada. Mar. Ecol. Prog. Ser., 302: 103-119 .

[Résumé disponible seulement en anglais]
Six cruises were carried out in the lower St. Lawrence Estuary (LSLE) and the NW Gulf of St. Lawrence (NW GSL) in spring and fall 1998, 2000, and 2001 to study the species composition, abundance, and distribution of macrozooplankton in relation to the physical environment. Our results confirm that the LSLE and the NW GSL represent 2 different physical environments. These differences are likely due to different circulation patterns observed between the 2 regions: the estuarine circulation in the LSLE and a quasi-permanent cyclonic gyre in the NW GSL. The dominant species found in both environments (LSLE and NW GSL) is the mysid Boreomysis arctica, but we observed no significant regional and interannual variations in its abundance. In contrast, 2 distinct groups characterized the LSLE and the NW GSL when we examined the other macrozooplankton groups. Two euphausiid species, Meganyctiphanes norvegica and Thysanoessa raschii, dominated in the LSLE. Their abundances were 6 and 15 times higher in the LSLE than in the NW GSL, respectively. On the other hand, the NW GSL was dominated by chaetognaths, hyperiid amphipods, and siphonophores. These groups were twice as abundant in the NW GSL as in the LSLE. Such interregional variations were attributed to different circulation patterns and different trophic systems. Furthermore, important interannual variations in the abundance of the major macrozooplankton species were also observed between 1998 and 2001 in the LSLE and the NW GSL. In the NW GSL, the arctic and boreo-arctic species were more abundant in 1998 than in 2000 and 2001. In contrast, their abundance was lowest in 1998, and highest in 2000 and 2001 in the LSLE. We hypothesize that stronger inflow of Labrador Shelf waters in the GSL via the Strait of Belle Isle may increase the advection of macrozooplankton into the LSLE.©2005 Inter-Research