Contenu archivé

L’information archivée est fournie à des fins de référence, de recherche ou de tenue de documents. Elle n’est pas assujettie aux normes Web du gouvernement du Canada et n’a pas été modifiée ou mise à jour depuis son archivage. Pour obtenir cette information dans un autre format, veuillez communiquer avec nous.

Bibliographie de l'Institut Maurice-Lamontagne


LESAGE, V., Y. MORIN, E. RIOUX, C. POMERLEAU, S.H. FERGUSON, E. PELLETIER, 2010. Stable isotopes and trace elements as indicators of diet and habitat use in cetaceans : predicting errors related to preservation, lipid extraction, and lipid normalization. Mar. Ecol. Prog. Ser., 419: 249-265.

[Résumé disponible seulement en anglais]
Accurately predicting errors related to preservation, lipid extraction, and lipid normalization on chemical tracers would enable the use of archived samples in long-term studies of trophic ecology and habitat use of aquatic species. We determined whether stable carbon and nitrogen isotope ratios and concentrations of 14 trace elements can be accurately predicted from dimethyl sulfoxide (DMSO)-preserved mammal skin, which would provide equivalent estimates to that from unpreserved tissue. We tested 3 lipid-correction approaches for applicability to cetacean skin, a largely unexplored taxon and tissue, and provide a model for evaluating impacts of errors from lipid extraction or normalization on diet composition estimated using isotopic mixing models. DMSO had unpredictable effects on trace element concentrations, rendering DMSO-preserved samples inefficient for retrospective studies. However, lipid extraction and DMSO preservation resulted in predictable and similar, although not identical, effects on isotopic signatures across 4 cetacean species with different skin structure and thickness, making correction for these effects a potentially viable alternative to lipid and DMSO extraction. Generally, lipid-normalization models were reliable when applied to cetacean skin, as errors were similar to those from other species or tissues. Because model fit generally improved with data specificity, developing tissue- and species-specific parameters and equations is probably more important than model choice, although the mass-balance model was considered the most robust across aquatic vertebrates and tissues. The effects of errors associated with the various treatments and lipid normalization on isotopic mixing results increased as the isotopic distance among prey sources decreased, suggesting that empirical corrections as an alternative to d13C determination from lipid-extracted duplicate samples need to be evaluated a priori relative to study objectives and anticipated results.©2010 Inter-Research

POMERLEAU, C., S.H. FURGUSON, W. WALKUSZ, 2010. Stomach contents of bowhead whales (Balaena mysticetus>/i>) from four locations in the Canadian Artic. Polar Biol., 34(4): 615-620 .

[Résumé disponible seulement en anglais]
Abstract The stomach contents of four bowhead whales (Balaena mysticetus) harvested between 1994 and 2008 from the Canadian Arctic were examined to assess diet composition. Three samples were collected from bowhead whales of the Eastern Canada––West Greenland (EC––WG) population and represent, according to our knowledge, the first diet analysis from this bowhead whale stock. We also examined the stomach content of one bowhead whale from the Bering-Chukchi-Beaufort (BCB) population hunted in 1996. All four whales had food in their stomachs and their diet varied from exclusively pelagic (BCB whale), with Limnocalanus macrurus being the main prey, to epibenthic and benthic (EC––WG) with Mysis oculata playing an important role. These results indicate broad foraging spectrum of the bowhead whales and add to a basic knowledge of their diet.&Copy;2010 Springer-Verlag